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ABSTRACT: Brazil is a major producer of wood, with Eucalyptus plantations covering over 7 
million hectares. Leaf area index (LAI) is a crucial parameter for determining stand carbon and 
water balance, and ultimately assessing the crop growth status. However, LAI is highly variable in 
space, within and between stands, and temporally, across rotations. This study aims to investigate 
the relationship between LAI and various vegetation indices derived from Sentinel 2 images, and 
develop empirical equations calibrated at the Eucflux site with Root Mean Squared Error values as 
low as 0.49 m2/m2. The incorporation of variables related to satellite and sun acquisition geometry 
significantly improves the accuracy of the prediction model. In addition, separating the model by 
genotypes greatly improves its performance, but may affect transferability. 
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Introduction 

The availability of spatiotemporal earth observation data broadens the scope of analysis of 

forest plantation traits, such as leaf area index (LAI). LAI is a dimensionless structural canopy trait 

referring to the surface of green leaf area per unit of ground area. Many surface processes depend 

heavily on LAI, which can be used in multiple applications such as yield forecasting and disturbance 

monitoring (Yin et al., 2019).  

Empirical models are commonly used to estimate biophysical traits using remote sensing data, 

which explore the correlation between canopy traits and vegetation indices (VIs). VIs are spectral 

band combinations that enhance spectral features sensitive to vegetation (Bannari et al., 1995). 

Although these models lack generic capacity, they continue to be used, especially for local and crop-

specific applications (Bajocco et al., 2022) 

Vegetation canopy reflectance is related to LAI, but is also a function of vegetation traits, 

such as leaf inclination, chlorophyll content etc which varies by species/genotypes. Additionally, the 

sun-view geometry at image acquisition may also strongly influence the reflectance response. Recent 
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research has shown that geometry variables can explain 30% to 43% of the spectral variability of 

Sentinel-2 bands, indicating that taking into account biophysical information and geometry variables 

can significantly improve LAI estimations (Kganyago et al., 2023) 

The study aims to screen the potential of vegetation indices (VIs) derived from Sentinel-2 

(S2) imagery to estimate LAI in eucalyptus plantations in a study site in São Paulo, Brazil. The study's 

specific objective is to determine if incorporating geometry and genotype variables improves the 

fitting of models to the data. 

 

Material and methods 

Area of interest (AOI) 

The study area is a 200-hectare commercial eucalyptus plantation located in Itatinga, São 

Paulo, Brazil, and is part of the Eucflux project. The plantation consists of 25 genotypes planted in 

five blocks for the current rotation (2019-onwards), as well as four other blocks of 16 genotypes 

conducted as coppice. Other four plots were measured around a flux-tower on the main genotype of 

the whole Eucflux stand. Only the coppice blocks were not used in this study. The site configuration 

is explained in detail in a previous study by (Le Maire et al., 2019) 

Data 

The data consists of in-situ LAI measurements and remote sensing data. LAI measurements 

were obtained through destructive sampling, as explained in (Le Maire et al., 2011), between April 

2019 and December 2021. The remote sensing data consists of S2 surface reflectance data (level-2A). 

To minimize plot border effects, the pixels were extracted using an inner spatial buffer of 10 meters 

for each plot. A surface-weighted average of the reflectances were computed giving more weight to 

pixels that covers a larger area within the plot. The S2 data falls within a window of +/-10 days around 

the LAI in-situ measurement date. 

 

Experimental setup 

The selection of vegetation indices (VIs) was based on literature review and careful 

consideration of the following criteria: 1) the Normalized Difference Family of Indices, with a 

particular emphasis on the widely used NDVI that uses near-infrared and red bands, as well as other 

indices that incorporate the red-edge, green, and blue bands that have been shown to enhance the 

estimation of Leaf Area Index LAI (Wang et al., 2007); 2) indices containing short-wave infrared 

(SWIR) bands; and 3) additional indices specifically designed to correlate with traits that could 
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covariate with LAI, such as canopy water or chlorophyll content. The shortlisted VIs are presented 

in Table 1.   

Three types of regression models were evaluated for each vegetation index: a base model that 

relates LAI to the VI, a second model accounting also for geometry variables (SZA, VZA, RAA), 

and a third model a model that builds on the second but calibrated separately for each genotype. The 

models were trained on 80% of the data using 10-fold cross-validation. All variables used in the 

models were normalized before training. 

The models were evaluated based on two metrics: Akaike information criterion (AIC) and prediction 

root mean square error (RMSE). AIC was used to identify the model that explains the greatest amount 

of variation using the fewest variables. The model with the lowest AIC and above 2 AIC units lower 

than the model being compared with is considered to be better. RMSE measures the difference 

between the predicted values and actual observations in the same units as the observations. The 

remaining 20% of the dataset, sample across all years, were used for testing the model. 

Table 1 - Vegetation indices from Sentinel-2 MSI data. 

Index Name S2 Equation Reference 
CIRE Chlorophyll Index Red Edge (B8 / B5) - 1 (Gitelson et al., 2003) 

GBNDVI Green-Blue Normalized Difference Vegetation Inde  
(B8 – (B3 + B2)) /  
(B8 + (B3 + B2)) (Wang et al., 2007) 

MCARI705 
Modified Chlorophyll Absorption in Reflectance 
Index 

((B6 – B5) - 0.2) * (B6 – B3)) *  
(B6/ B5) (Wu et al., 2008) 

MNDVI Modified Normalized Difference Vegetation Index (B8 – B12) / (B8 + B12) (Jurgens, 1997) 

NDCI Normalized Difference chlorophyll Index (B5 – B4) / (B5 + B4) (Mishra; Mishra, 2012) 

NDWI1 Normalized Difference Water Index (B8A – B11) / (B8A + B11) (Gao, 1996) 

NDVI Normalized Difference Vegetation Index (B8 – B4) / (B8 + B4) (Rouse et al., 1974) 
NDVI705 Normalized Difference Vegetation Index 705 (B6 – B5) / (B6 + B5) (Gitelson; Merzlyak, 1994) 

SeLI Sentinel-2 LAI Green Index (B8A – B5) / (B8A + B5) (Pasqualotto et al., 2019) 

 

 

Results and discussion 

The AIC estimated for each VI’s model is displayed in Figure 2, sorted according to the lowest 

AIC (Figure 1). The VI which gave the best result among all models was GBNDVI, under the 

genotype configuration, with an RMSE of 0.49 m2/m2. 

All regression models showed significant improvement when geometry variables were incorporated 

(AIC > 2). As illustrated by (Kganyago et al., 2023) the rate of spectral variability explained by 
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geometric variables varies by band. Since VIs are computed from bands compositions that might be 

differently affected by sun-sensor geometry, some VIs might be more sensitive to these variables than 

others. The NDCI was the VI most affected by the incorporation of geometry variables. Its inclusion 

reduced the AIC by approximately half and decreased the RMSE by around 11%. The lowest error 

under the geometry model configuration (not considering genotype) was obtained with CIRE, with 

an RMSE of 0.63 m2/m2 (Figure 1). 

In regard to the third type of regression model, most models strongly benefit from considering 

the genotype (1 to 25) as explanatory variables. Concerning the RMSE, the improvements between 

the base models and the genotype models ranged from 3% to 11%. The GBNDVI geometry + 

genotype model obtained the lowest RMSE (0.49 m2/m2) (Figure 1).  
 

 

Figure 5 – AIC (left) and RMSE (right) sorted by VI and model type.  

These improvements in LAI predictions are likely due to distinct characteristics of eucalyptus 

genotypes, such as leaf angle distribution, chlorophyll and water content, and other factors that affect 

canopy reflectance. A genotype-aware model reduces error but is difficult to transfer to other sites. 

An alternative approach is to use physical models to understand how individual traits influence 

reflectance behavior, which can help in predicting LAI values.  Figure 2 shows measured and 

predicted LAI values obtained from the genotype-aware model. Notice that LAI considerably varies 

among genotypes. 
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Figure 6 – Predicted LAI (blue triangles) and measured LAI (orange dots) from 2019 to 2021 on the test dataset per 

genotype (1 – 25).  

 

Conclusion 

The key conclusions are 1) all VIs benefit from adding sun-view geometry to predict LAI and 

2) including the genotypes as explanatory variables reduce the error by up to 11% but at the expense 

of genericity loss. 
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